STEREOSELECTIVE SYNTHESIS OF $\alpha\text{-RIBONUCLEOSIDES}$ FROM 1-HYDROXY SUGARS BY USING 2-FLUOROPYRIDINIUM TOSYLATE

Teruaki MUKAIYAMA,* Yukihiko HASHIMOTO,
Yujiro HAYASHI, and Shin-ichiro SHODA
Department of Chemistry, Faculty of Science,
The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

A novel method for the preparation of α -ribonucleosides was developed by the use of 2-fluoro-1-methylpyridinium tosylate as a condensing reagent. Various α -ribonucleosides were synthesized from 1-hydroxy sugars and trimethylsilylated nitrogen compounds, such as nucleoside bases and azide, in good yields under mild conditions.

In recent years, much attention has been given to biologically active 1',2'-cis-nucleosides, which involve α -ribazole [a component of vitamin B_{12} , 5,6-dimethyl-1-(α -D-ribofuranosyl)benzimidazole] and ara-A (9- β -D-arabinofuranosyladenine). Concerning the N-glycosylation reactions directed toward the synthesis of 1',2'-cis-nucleosides, there have been reported few general and useful methods. 1) In this communication, we wish to report an efficient method for the preparation of α -ribonucleosides starting from 1-hydroxyribofuranoses and trimethylsilylated nucleoside bases by using 2-fluoropyridinium tosylate as a condensing agent. 2)

It has already been found in our laboratory that the 2-fluoropyridinium salt is a superior reagent for the convenient synthesis of glycosyl fluorides from 1-hydroxy sugars 4) (Scheme 1, route A). Based on the results, it was postulated that, when the intermediate $\underline{3}$ is more reactive toward a nucleoside base than the fluoride ion under appropriate conditions, a N-glycosyl compound could be formed as shown in Scheme 1 (route B).

At the first stage, the reaction of 2,3,5-tri-O-benzyl-D-ribofuranose $^{5)}$ ($\underline{1}$) and 1-trimethylsilylbenzimidazole ($\underline{4}$) was examined using 2-fluoro-1-methyl-pyridinium tosylate $^{6)}$ ($\underline{2}$) as a condensing reagent. Fortunately, the corresponding nucleoside with α -configuration was predominantly obtained ($\alpha/\beta=76/24$). To achieve higher stereoselectivity, we next screened the reaction conditions using various 1-hydroxy sugars taking 1-trimethylsilylbenzimidazole ($\underline{4}$) as a model silylated nucleoside base. The result shows that the reaction of 5-O-benzoyl-2,3-O-isopropylidene-D-ribofuranose $^{7)}$ ($\underline{5}$) or 2,3-O-isopropylidene-5-O-triphenylmethyl-D-ribofuranose $^{8)}$ ($\underline{6}$) with $\underline{4}$ in the presence of 1-ethylpiperidine or N-ethyldi-isopropylamine gave the best result (Scheme 2).

The following is a typical procedure for the preparation of 1-(5-0-benzoyl-2,3-0-isopropylidene- α -D-ribofuranosyl)benzimidazole: To a stirred suspension of 2-fluoropyridinium salt 2^{6} (0.38 mmol) in dichloromethane (1 ml) was added a dichloromethane solution (2 ml) of 5-0-benzoyl-2,3-0-isopropylidene-D-ribofuranose⁷⁾ (5, 0.23 mmol) and N-ethyldiisopropylamine (0.51 mmol) at -30 °C and the reaction mixture was stirred for 3 h with gradually warming to -5 °C. To this yellowish solution was added a dichloromethane solution (2 ml) of 1-trimethyl-silylbenzimidazole (4, 0.89 mmol). After the reaction was completed (0 °C, 1 d then rt, 1 d), the solvent was evaporated in vacuo and the residue was applied to silica gel column chromatography and 1-(5-0-benzoyl-2,3-0-isopropylidene-D-ribofuranosyl)benzimidazole was isolated in 82% yield (α/β = 89/11).

In a similar manner, several $\alpha\text{-ribonucleosides}$ are prepared in good yields as shown in Table 1.

In general, when 5-0-benzoyl-2,3-0-isopropylidene-D-ribofuranose $^{7)}$ ($\underline{5}$) was employed as a 1-hydroxy sugar, the reaction proceeded more stereoselectively compared with the similar reaction of 5-0-triphenylmethyl derivative $\underline{6}$. $^{8)}$ It is noted that, according to the present procedure, an α -ribazole derivative was synthesized in high yield (entry 2), and also azide group could be smoothly introduced to anomeric center of ribofuranose (entry 7). Based on low temperature 1 H and 13 C NMR spectra of the intermediate $\underline{7}$ (R= Bz), essentially one anomer (β -form) could be detected. It suggests that the intermediate $\underline{7}$ is selectively formed by the reaction of 2-fluoropyridinium tosylate $\underline{2}$ with β -anomer of 1-hydroxy sugar, which is in equilibrium with α -anomer. Desired α -ribonucleosides are considered

				Ribonucleosides ^{a)}
Table	1	Synthecic	Λf	Ribonucleosides"
Iaule	.	Jyn Che Ji J	O I	Kibbhacicobiaco

Entry	B of Me ₃ Si-B	Sugar	Yield/%	α / β
1	$\langle \rangle$	<u>5</u>	82	89 / 11 ^{b)}
2	Me N	<u>5</u>	80	90 / 10
3	N N	<u>5</u>	82	86 / 14 ^{b)}
4	Me N Me	<u>5</u>	99	84 / 16
5	Me N	<u>6</u>	5 3	32 / 68 9)
6	O N N N Me	<u>5</u>	32	53 / 47
7	N ₃	<u>6</u>	100	82 / 18 10)
8	ON	<u>1</u>	71	74 / 26 ^{c)}
9	OSiMe3 N Me	<u>6</u>	71	76 / 24 ^{d)}

a) Reactions were carried out with 1-ethylpiperidine as a base, except for entries 1 and 3. All products gave satisfactory NMR spectra. The anomeric configuration of the products was determined by NMR data 13) and physical constants. 1c,11,12)

to be the products of S_N2 reaction with inversion of anomeric center of the intermediate $\underline{7}$, while undesired β -isomers are possibly formed via S_N1 type reaction path. The predominant formation of β -anomer in the case of theophiline derivative (entry 5) may due to insolubility of the corresponding anion of the silylated base

b) N-Ethyldiisopropylamine was used as a base.

c) O-Glycosylation proceeded exclusively instead of the desired N-glycosylation.

d) The products are assigned to be N-glycosyl compounds by NMR data.

to the solvent, which makes $S_{N}2$ type reaction path unfavorable.

An attempt to obtain α -adenosine and an application of this method to the synthesis of 1',2'-cis-nucleosides containing arabinose are now in progress.

References

- a) J. D. Stevens, R. K. Ness, and H. G. Fletcher, Jr., J. Org. Chem., 33, 1806 (1968), and the references cited therein. See also: H. G. Fletcher, Jr., Trans. N. Y. Acad. Sci., 30, 649 (1968);
 - b) Y. Furukawa, K. Imai, and M. Honjo, Tetrahedron Lett., 1968, 4655;
 - c) H. Tsutsumi, Y. Kawai, and Y. Ishido, Chem. Lett., <u>1978</u>, 629; H. Tsutsumi, K. Okazaki, M. Asai, K. Itoh, F.-H. Kuan, and Y. Ishido, Nippon Kagaku Kaishi, 1982, 1682;
 - d) F. Seela, D. Hasselmann, and H.-D. Winkeler, Justus Liebigs Ann. Chem., 1982, 499; F. Seela and H.-D. Winkeler, J. Org. Chem., 47, 226 (1982), and the references cited therein.
- 2) We have already reported a synthesis of nucleosides using benzoxazolium salt, $^{3)}$ however, according to this procedure, α -ribonucleosides can not be obtained because of the neighboring participation of 2-acyloxy group of 1-hydroxy sugar.
- 3) T. Mukaiyama, S. Shoda, T. Nakatsuka, and K. Narasaka, Chem. Lett., 1978, 605.
- 4) T. Mukaiyama, Y. Hashimoto, and S. Shoda, Chem. Lett., 1983, 935.
- 5) R. Barker and H. G. Fletcher, Jr., J. Org. Chem., 26, 4605 (1961).
- 6) T. Mukaiyama, Angew. Chem., Int. Ed. Engl., 18, 707 (1979).
- 7) This compound is synthesized by three steps procedure from D-ribono-1,4-lactone in 89% overall yield [(i) acetone, H⁺ (ii) PhCOC1, pyridine (iii) bis-(1,2-dimethylpropyl)borane, THF].
- 8) T. J. Cousineau and J. A. Secrist III, J. Org. Chem., 44, 4351 (1979).
- 9) α -Anomer: mp 178-179 °C (MeOH) [lit, 1c) 174.5-175 °C (MeOH)]. β -Anomer: mp 259-262 °C (EtOH) [lit, 1c) 267-269 °C (EtOH)], $[\alpha]_D^{24.5}$ +13° (c 1.2, CHCl₃) [lit, 1c) $[\alpha]_D^{22}$ +20° (c 1.0, CHCl₃)].
- 10) α -Anomer: mp 105-106 °C (Et₂O petroleum ether), $[\alpha]_D^{28}$ +9.6° (c 1.1, CHCl₃) [1it, ¹¹) $[\alpha]_D^{+8}$ ° (c 1, CHCl₃)], IR (KBr) 2115 cm⁻¹ (N₃) (1it, ¹¹) 2135 cm⁻¹). β -Anomer: $[\alpha]_D^{18.5}$ -118° (c 1.0, CHCl₃) [1it, ¹²) $[\alpha]_D^{25}$ -98.0° (c 2.74, CHCl₃)], IR (neat) 2115 cm⁻¹ (N₃) [1it, ¹²) (CHCl₃) 2113 cm⁻¹].
- 11) M. J. Camarasa, R. Alonso, and F. G. de las Heras, Carbohydr. Res., $\underline{83}$, 152 (1980).
- 12) M. W. Logue and B. H. Han, Carbohydr. Res., 121, 287 (1983).
- 13) a) T. Nishimura and B. Shimizu, Chem. Pharm. Bull., 13, 803 (1965);
 - b) B. Rayner, C. Tapiero, and J.-L. Imbach, Carbohydr. Res., 47, 195 (1976);
 - c) M. MacCoss, M. J. Robins, B. Rayner, and J.-L. Imbach, Carbohydr. Res., $\underline{59}$, 575 (1977).

(Received January 24, 1984)